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Abstract

This paper describes the modern approaches to the analytical treatment of dynamical thermoelasticity. It has been
a well known fact that the classical heat conduction equation does not describe the phenomenon of heat

propagation correctly. Contrary to the solutions of the classical heat conduction equation, which predicts the
in®nite speed of the heat wave, the experimental results indicate that heat travels with ®nite speed. The same results
apply to thermoelastic waves. Therefore, the modern approaches to this problem depend on appropriate

modi®cations of the classical heat conduction equation. Five such approaches are described in the paper: (a) Lord
and Shulman (L±S) theory; (b) Green and Lindsay (G±L) theory; (c) Hetnarski and Ignaczak (H±I) theory; (d)
Green and Naghdi (G±N) theory; and (e) Chandrasekharaiah and Tzou (C±T) theory. Some evaluation and
comparison of the results that follow from these ®ve descriptions is provided. # 1999 Elsevier Science Ltd. All

rights reserved.

1. Introduction

By a nonclassical dynamical thermoelasticity we mean a hyperbolic thermoelasticity in which
disturbances propagate with ®nite wave speeds. The ®rst theories of hyperbolic thermoelasticity were
formulated in the late 1960's in an attempt to eliminate the shortcomings of classical thermoelasticity,
such as:

1. in®nite velocity of thermoelastic disturbances,
2. unsatisfactory thermoelastic response of a solid to short laser pulses, and
3. poor description of thermoelastic behavior at low temperatures (Lord and Shulman, 1967; Green and

Lindsay, 1972; Francis, 1972; Chandrasekharaiah, 1986).
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Attempts to present a theory of thermoelastic waves that would be attractive to both the basic and
applied researchers have been continued in the literature up to date.

The aim of this paper is to review a number of results on ®nite wave speed thermoelastic disturbances
that are based on ®ve di�erent theories of a thermoelastic solid, and which have been obtained in the
literature during the past 30±33 years. The ®ve theories discussed are:

(i) Generalized Thermoelasticity proposed in 1967 by Lord and Shulman (L±S Theory),
(ii) Temperature-Rate Dependent Thermoelasticity introduced in 1972 by Green and Lindsay (G±L
Theory),
(iii) Low-Temperature Thermoelasticity proposed in 1996 by Hetnarski and Ignaczak (H±I Theory),
(iv) Thermoelasticity Without Energy Dissipation formulated in 1993 by Green and Naghdi (G±N
Theory), and
(v) Dual-Phase-Lag Thermoelasticity proposed in 1998 by Chandrasekharaiah and Tzou (C±T
Theory).

Although the ®ve theories are not the only ones that have been proposed during the past 30±33 years
in an attempt to describe thermoelastic waves in a solid, they are, in the authors' opinion, representative
in discussing the subject. In particular, in each of the ®ve theories, a thermoelastic disturbance produced
by an external thermomechanical load of a bounded support cannot invade an unbounded body in ®nite
time.

It should be stressed that these theories have not been veri®ed by an experiment up to date. To study
concrete thermoelastic waves described by a solution to a particular initial-boundary value problem in
any of these theories, approximate values of the material functions are usually used. For example, to
numerically discuss an analytical solution to a problem in L±S theory, the value of a relaxation time is
taken from experimental results for a rigid heat conductor, while the remaining material functions are
identi®ed with those of an elastic body under isothermal or adiabatic conditions. Finding materials that
would comply with any of the ®ve hyperbolic thermoelastic theories remains a challenge for
experimental researchers in the ®eld of thermoelastic waves.

2. A thermoelastic wave propagating in the L±S model

The L±S model is described by a system of partial di�erential equations (PDE) in which in
comparison to a system of classical thermoelasticity, the Fourier law of heat conduction is replaced by
the Maxwell±Cattaneo law that generalizes the Fourier law and introduces a single relaxation time into
consideration. An ordered array of functions [u, E, S; y, Z, q]; in which u, E, S, y, Z and q denote the
displacement, strain, stress, temperature, entropy and heat ¯ux ®elds, respectively; that comply with
system of PDE describes a thermoelastic wave propagating in the L±S model. These ®elds are de®ned
on a cartesian product �B � �0,1�, where �B is a domain occupied by the model and [0, 1) is the time
interval. By eliminating four functions from the six that de®ne a wave, one can obtain the ®eld
equations of L±S theory in terms of various pairs of mechanical and thermal variables, such as (u, y ),
(u, q), (S, y ) and (S, q); and a pair of thermomechanical variables ( , ), formed from the variables that
de®ne a thermoelastic wave, corresponds to the wave if the remaining variables of the wave can be
restored from the pair. For example, a pair (u, y ) that satis®es the displacement-temperature ®eld
equations of L±S theory, subject to suitable initial and boundary conditions, is a pair corresponding to
a thermoelastic wave because it generates the ®elds E, S, Z and q in such a way that the ordered array
of functions [u, E, S; y, Z, q] represents a thermoelastic wave corresponding to an external
thermomechanical load applied to the body �B over a time interval. An initial-boundary value problem
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for a pair (u, y ) in which the initial conditions are imposed on the displacement u, velocity Çu ,
temperature y and temperature rate _y , is called a displacement-temperature characterization of a
thermoelastic wave of L±S theory.

Similarly, a pair (S, q) that satis®es the stress-heat ¯ux ®eld equations of L±S theory subject to
suitable stress-heat ¯ux initial and boundary conditions is a pair corresponding to a thermoelastic wave
because it generates the ®elds u, E, y and Z in such a way that the array of functions [u, E, S; y, Z, q]
represents a thermoelastic wave of L±S theory (Ignaczak, 1989).

For a nonhomogeneous anisotropic thermoelastic body, a displacement-temperature wave
corresponding to an external thermomechanical load depends on the following set of constitutive
variables:

fy0, t0; r, cE; K, M; Cg: �1�
Here, y0 and t0 are a ®xed uniform reference temperature and a constant relaxation time, respectively;

r=r(x ) and cE=cE(x ) are the mass density and the speci®c heat for zero strain (scalar) ®elds,
respectively; K=K(x ) and M=M(x ) are the conductivity and the stress-temperature (second-order)
tensor ®elds, respectively; and C=C(x ) is the elasticity (fourth order) tensor ®eld.

The external thermomechanical load in a mixed displacement-temperature problem is represented by
the set of functions:

fb, r; u0, Çu0, W0, _W0; u 0, s 0, y 0, q 0g: �2�
Here, b=b(x,t ) and r=r(x,t ) are the body force and heat supply ®elds; respectively; (u0, W0) and
� Çu0, _W0� are the initial values of (u, y ) and � Çu ,_y �, respectively; and u ', s ' y ' and q ' denote the boundary
displacement, traction, temperature, and heat ¯ux, respectively. Moreover, the superimposed dot denotes
the partial derivative with respect to time t.

Let B(t ) denote a support of the thermomechanical load Eq. (2) for a ®xed time t, i.e. the set of
points of �B on which the load does not vanish over the interval [0, t ]. Let A=A(x, m) be the (second
order) acoustic tensor in the propagation direction m de®ned for any unit vector m and any vector a by
the relation

A�x, m�a � rÿ1�x�C�a
m�m, �3�
where r=r(x ) and C=C(x ) are the mass density and elasticity tensor ®elds, respectively, (cf. Eq. (1)).
Moreover, let S(x, Ct ) denote an open ball in E 3 with radius Ct and center at x. Finally, let B �(t ) be
the set de®ned by

B��t� � fx 2 �B : B�t� \ S�x, Ct� 6�bg: �4�
The following theorem shows that the displacement-temperature wave produced by the external load

Eq. (2) propagates with a ®nite speed.

Theorem 1 (Domain of in¯uence theorem for mixed displacement-temperature problem of L±S theory).
Let (u, y ) be a solution to the mixed problem. Then for Crmax(C1, C2),

u � 0, y � 0 on � �B ÿ B��t�� � �0, t�: �5�

Here, C1 is an upper bound over B and |m|=1 of a simple algebraic function that depends on y0, r0,
cE, |M| and |A|; while C2 is an upper bound over B of a simple algebraic function that depends on y0,
t0, r, cE, |M| and |K|.
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Proof (Given by Ignaczak et al., 1986 and Ignaczak, 1991)). The set B �(t ) is called a domain of
in¯uence of the load Eq. (2) for the mixed problem.

Theorem 1 implies that for a ®nite t and for a bounded support of the thermomechanical load, i.e. for
a bounded set B(t ), the thermoelastic disturbance generated by a pair (u, y ) vanishes outside of a
bounded domain B �(t ) that depends on the load support, the bounds on the thermomechanical
constitutive ®elds (see Eq. (1)), and the relaxation time t0. This theorem also shows that the
thermoelastic disturbance propagates as a wave from the domain B(t ) with a ®nite speed equal to or less
than the speed C. An analysis of the velocities C1 and C2 indicates that C1 is ®nite and C2 41 as
t04 0+0; hence, C 41 as t0 4 0+0. Therefore, if the relaxation time goes to zero, the thermoelastic
disturbance described by the pair (u, y ) gains an in®nite speed, as should be expected since, in this
limiting case, the mixed displacement-temperature problem of L±S theory reduces to a mixed problem of
classical thermoelasticity.

An analysis of the velocities C1 and C2 also shows that for a particular nonhomogeneous anisotropic
L±S model in which the acoustic and conductivity tensor ®elds are relatively small, the maximum speed
of a thermoelastic wave is given by the formula

C0 � sup
B

(�
y0
rcE

�1
2 jMj

)
: �6�

This formula shows that for a nonhomogeneous anisotropic thermoelastic body in which the acoustic
tensor and the heat conductivity tensor ®elds are relatively small, the maximum speed of a thermoelastic
wave in the L±S theory is dominated by a suitably scaled stress-temperature tensor ®eld.

Also, the analysis of C1 and C2 shows that if |M| is relatively small, the velocity C1 reduces to that of
a domain of in¯uence theorem from classical isothermal elastodynamics (Gurtin, 1972; Eringen and
Suhubi, 1975), while the velocity C2 reduces to that of a domain of in¯uence theorem for a
nonhomogeneous anisotropic rigid heat conductor.

Finally, for a ®nite value of |M|, C1 and C2 represent upper bounds on the velocities of a
quasimechanical and of a quasithermal wave, respectively, propagating in the L±S model.

As far as the stress-heat ¯ux characterization of a wave in the L±S model is concerned, we note that a
domain of in¯uence result for a pair (S, q) was formulated and proved by Bial/y (1991); the result covers
the case of a thermoelastic wave produced by the initially distributed thermoelastic defects in an L±S
model that is not included in Theorem 1.

3. A thermoelastic wave propagating in the G±L model

The G±L model is characterized by a system of partial di�erential equations in which, in comparison
to the classical system, the constitutive relations for the stress tensor and the entropy are generalized by
introducing two di�erent relaxation times into considerations.

A displacement-temperature wave propagating in the G±L model complies with the system of ®eld
equations for a pair (u, y ) subject to the initial and boundary conditions similar to that of L±S theory.
The existence of two relaxation times, t0 and t1 (t1r t0>0) in the formulation makes a di�erence
between the L±S and G±L characterizations of the wave. The set B(t ) from Section 2 is also a support
of the thermomechanical load Eq. (2). However, a domain of in¯uence of the thermomechanical load at
instant t is de®ned by Eq. (4), in which C satis®es the inequality: Crmax�C1

0, C2
0�, where C1

0 � C1 and
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C2
0 is an upper bound over B of a simple algebraic function that depends on y0, t0, t1/t0, r, cE, |M| and

|K| (cf. Theorem 1).
With regard to a mixed displacement-temperature problem (MDTP) of G±L theory, the following

theorem holds true:

Theorem 2 (Domain of in¯uence theorem for MDTP of G±L theory). Let (u, y ) be a solution to MDTP
of G±L theory. Then

u � 0, y � 0 on � �B ÿ B��t�� � �0, t�, �7�
where B �(t ) is given by Eq. (4), in which C satis®es the inequality Crmax�C1

0, C2
0�

Proof ((Carbonaro and Ignaczak, 1987)). A physical interpretation of Theorem 2 is similar to that of
Theorem 1. Moreover, the de®nition of C implies that the velocities C1

0 and C2
0 correspond,

respectively, to the maximum speed of a quasimechanical and of a quasithermal wave propagating in the
G±L model; and, for |M|=0, they reduce to the maximum speeds of a pure mechanical and a pure
thermal wave, respectively.

Also, for a particular nonhomogeneous thermoelastic G±L model in which the acoustic and heat
conductivity tensor ®elds are relatively small, the maximum speed of a thermoelastic wave is given by

C0
0 � sup

B

(
t1
t0

�
y0
rcE

�1
2 jMj

)
: �8�

In addition, if �C1, C2� stands for a pair of velocities in the L±S theory, and if the thermomechanical
constitutive ®elds of the L±S and G±L models are identical, by virtue of the inequality: t1r t0>0, we
obtain C2

0rC2, and C2
0 � C2 if and only if t1=t0>0. Therefore, the following observations are in

order. If the supports of the thermomechanical load in MDTP of the L±S and G±L theories are the
same for a ®xed time t, and the constitutive ®elds in both theories are the same, then:

(i) the domain of in¯uence of G±L theory is not smaller than that of L±S theory, and
(ii) the domain of in¯uence of G±L theory coincides with that of L±S theory if t1=t0>0.

Clearly, Theorem 2 covers a conventional MDTP of G±L theory in which the initial conditions are
imposed on the pair (u, y ). For a domain of in¯uence theorem associated with a pure stress-temperature
initial-boundary value problem of G±L theory that admits initially distributed thermoelastic defects, the
reader is referred to Ignaczak (1991).

Finally, we note that a particular domain of in¯uence results in the L±S and G±L theories have been
obtained in a number of papers devoted to the potential-temperature waves propagating in a
homogeneous isotropic thermoelastic body. This type of waves is generated by a pair (u, y ) in which
u=HF and F is a scalar potential on �B � �0,1� and, for a one-dimensional domain B, it covers all
transient plane thermoelastic waves in the L±S and G±L theories. In a one-dimensional initial-boundary
value problem for a semi-space xr0 subject to a thermomechanical load on the boundary x = 0, a
domain of in¯uence is identi®ed with the boundary layer 0 R x R n2t, where n2 is the greater speed of a
decomposition theorem of the G±L theory (Ignaczak, 1991).

A study of one-dimensional thermoelastic waves produced by an instantaneous plane source of heat
in homogeneous isotropic in®nite and semi-in®nite models of G±L type is presented by Hetnarski and
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Ignaczak (1993), while the application of this study to the analysis of the response of a semi-in®nite G±
L model to short laser pulses is given by Hetnarski and Ignaczak (1994).

The mathematical theory of a potential-temperature initial-boundary value problem that
accommodates asymptotic behavior of the waves analyzed by Hetnarski and Ignaczak (1993, 1994) as
t41 was presented by the late Prof. Gaetano Fichera in two papers (Fichera, 1997a, 1997b); while a
comparison between the wave-forms observed experimentally in an aluminum plate subject to a high-
power Nd±YAG laser pulse and the thermoelastic waves propagating in a G±L plate loaded by a laser
induced heat supply, is given by Suh and Burger (1998a) (see also Suh and Burger, 1998b).

4. A thermoelastic wave propagating in the H±I model

The H±I model proposed by Hetnarski and Ignaczak has been introduced in an attempt to describe
low-temperature soliton-like thermoelastic waves (Ignaczak, 1990; Hetnarski and Ignaczak, 1996;
Hetnarski and Ignaczak, 1997). The model is characterized by a system of nonlinear ®eld equations in
which, in comparison to the system of classical coupled thermoelasticity, both the free energy and the
heat ¯ux vector depend not only on the absolute temperature and the strain tensor but also on `elastic'
heat ¯ow that satis®es an evolution equation, and enters a modi®ed Fourier law and a modi®ed free
energy formula through a linear term and a quadratic term, respectively.

For a three-dimensional isotropic homogeneous body, a thermoelastic wave is described by a triplet
(T, U, B) on �B � �0,1� that satis®es a nonlinear coupled system of ®eld equations subject to linear
initial and boundary conditions. In this description, T, U and B denote the absolute temperature,
displacement vector and elastic heat ¯ow vector ®elds, respectively. The physical properties of the model
are represented by the set of parameters: {o, e �, z, k }, in which o, e �, z and k stand for a low-
temperature parameter (o<<1), a generalized thermoelastic coupling constant, an inertia coe�cient and a
function of the Poisson's ratio, respectively.

In a one-dimensional case in which: (i) the body occupies an in®nite space, i.e. |x| R1, (ii) the body
force and heat supply ®elds are absent, (iii) the triplet (T, U, B) is given by: T=T(x,t ), U=[u(x, t ), 0, 0]
and B=[Fx, 0, 0], where F=F(x,t ) is an elastic heat ¯ow potential, the three-dimensional ®eld
equations reduce to a nonlinear system of ®eld equations for a pair (u, F ) involving the parameters o,
e � and z only. The temperature T=T(x, t ) the total heat ¯ux in the x-direction q=q(x, t ) and the stress
S=S(x, t ) in the x-direction are generated by (u, F ) in a unique way.

The nonlinear system of equations for (u, F ) involves the small parameter o, so an asymptotic
analysis may be used to obtain approximate solutions to these equations. The case o=0 corresponds to
a thermodynamical equilibrium at which T= 1, q = 0 and S=0. Also, when u = 0 and E �=0, the one-
dimensional equations reduce to those describing a low-temperature nonlinear rigid heat conductor (cf.,
Hetnarski and Ignaczak, 1995).

Let s=xÿvt, where v is a positive constant. A soliton-like thermoelastic wave is de®ned as a triplet
[T(s ), q(s ), S(s )] generated by a pair [u(s ), F(s )] that satis®es the one-dimensional ®eld equations for
|s| R1, subject to the boundary conditions: T(ÿ1)=T(+1)=1, q(ÿ1)=q(+1)=0 and
S(ÿ1)=S(+1)=0. Clearly, a soliton-like thermoelastic wave is a localized wave propagating with a
constant velocity v in the x-direction. The following theorem holds true:

Theorem 3.

(i) If ẑ � zoÿ1=2r1 and E �>0, then there are two implicit-form soliton-like thermoelastic waves
[T(s1), q(s1), S(s1)] and [T(s2), q(s2), S(s2)] propagating with velocities v1 and v2, respectively, in the x-
direction (si=xÿvit, i = 1, 2); and v1 and v2 are represented by simple algebraic functions of o, e �

and ẑ.
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(ii) If o and z are both independent of each other and relatively small, then there are two closed-form
fast-moving soliton-like thermoelastic waves [T �(s1), q

�(s1), S
�(s1)] and [T �(s2), q

�(s2), S
�(s2)], each

revealing a fountain e�ect in a neighborhood of the moving front, and each close to a
thermodynamical equilibrium far from the front; two self-equilibrated forces parallel to the direction
of motion and applied to the wall in a neighborhood of the moving front si � s�i � const, secure
thermodynamical equilibrium of the wave [T �(si ), q

�(si ), S
�(si )].

Proof ((Hetnarski and Ignaczak, 1995, 1996, 1997)). The soliton-like thermoelastic waves [T(s1), q(s1),
S(s1)] and [T(s2), q(s2), S(s2)] that occur in Theorem 3 represent the quasi-thermal and quasi-mechanical
waves, respectively (Hetnarski and Ignaczak, 1997). Therefore, Theorem 3 may be useful in a low-
temperature thermoelastic solid experiment in which both types of such waves are observed.

It should be noted that the model of a low-temperature nonlinear thermoelastic solid discussed here is
con®ned to a homogeneous isotropic body with material properties independent of temperature. This is
a severe restriction on the results following from the discussion of the model since in reality at low
temperatures these properties depend strongly on temperature (cf., Zemansky, 1964). The aim of this
section however, was to discuss a simple model of a low-temperature nonlinear thermoelastic solid for
which soliton-like closed-form solutions may be obtained. A low-temperature thermoelastic solid, similar
to that considered in this section but with temperature-dependent properties, may be treated by
numerical methods.

As far as other low-temperature thermoelastic models proposed in the literature are concerned, the
papers by Caviglia et al. (1992) and by Kosinski et al. (1997) should be mentioned.

5. A thermoelastic wave propagating in G±N model

The G±N model, proposed by Green and Naghdi (1993) is described by a system of PDE in which, in
comparison to the classical thermoelastic system, the Fourier law of heat conduction is replaced by a
heat ¯ux rate-temperature gradient relation. So, a thermoelastic wave propagating in G±N model, and
corresponding to a displacement-temperature initial-boundary value problem, is characterized in terms
of a pair (u, y ) that satis®es the displacement-temperature ®eld equations in which the energy equation
does not contain the temperature rate _y . As a result, a solution (u, y ) to the problem represents an
undamped thermoelastic wave, and this motivates the name of G±N theory as Thermoelasticity Without
Energy Dissipation (TWED). For the L±S model the displacement-temperature energy equation does
contain _y ; similarly, _y is included in the displacement-temperature energy equation of the G±L theory.
This is a reason why the L±S and G±L models represent materials transmitting damped thermoelastic
waves. The existence of damped thermoelastic waves in the L±S and G±L theories has been revealed in
a number of papers devoted to theoretical (Achenbach, 1968; Ignaczak, 1978) and applied aspects
(Ignaczak, 1989; Hetnarski and Ignaczak, 1993; Hetnarski and Ignaczak, 1994) of these theories.

A Saint-Venant's principle associated with an initial-boundary value problem of the G±N theory for a
homogeneous isotropic thermoelastic body was presented by Nappa (1998). The principle asserts that a
measure of thermoelastic energy E=E(r, t ) for the problem has the properties:

(i) E(r, t )=0 for rrct, and
(ii) E(r, t ) R E(0, t )(1ÿr/ct ) for r R ct;
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where r is the distance of a point of the body B from the thermomechanical load support B(t ) (see
Section 2), and c is a constant of the velocity dimension. Clearly, the property (i) is a form of the
domain of in¯uence result for the problem, and (ii) represents a spatial decay estimate of the energy E(r,
t ) for r R ct, the decay rate being controlled by the factor (1ÿr/ct ). The Nappa result is similar to that
of classical isothermal elastodynamics (Chirita and Quintanilla, 1996). This analogy could be expected,
as both the isothermal elastic waves and the thermoelastic waves of G±N theory propagate without
energy dissipation.

A uniqueness theorem for a natural stress-entropy ¯ux initial-boundary value problem of the G±N
theory was proved by Chandrasekharaiah (1996a), while the continuous dependence of a solution to the
displacement-temperature initial-boundary value problem on the thermomechanical load in this theory
was established by Iesan (1998). The undamped character of one-dimensional thermoelastic waves in the
G±N theory was discussed by Chandrasekharaiah (1996b).

6. A thermoelastic wave propagating in the C±T model

The C±T model proposed by Chandrasekharaiah and Tzou in 1998 (Tzou, 1995; Chandrasekharaiah,
1998) is such an extension of the classical thermoelastic model in which the Fourier law is replaced by
an approximation to a modi®ed Fourier law with two di�erent time translations: a phase-lag of the heat
¯ux tq and a phase-lag of the temperature gradient ty. A Taylor series approximation of the modi®ed
Fourier law, together with the remaining ®eld equations, leads to a complete system of equations
describing a dual-phase-lag thermoelastic model. The model transmits thermoelastic disturbances in a
wave-like manner if the approximation is linear with respect to tq and ty, and 0 R ty < tq; or quadratic
in tq and linear in ty, with tq>0 and ty>0. In the former case, the linear approximation of the modi®ed
Fourier law together with the energy balance equation for a rigid heat conductor lead to Je�reys type
hyperbolic heat conduction equations (Joseph and Preziosi, 1989, 1990; Tamma and Zhou, 1998). Also,
in this case the following decomposition theorem for the heat ¯ux holds true.

Theorem 4. If the second order tensor K in the linear approximation of the modi®ed Fourier law takes
the form: K=(tq/ty )KF, 0 < ty < tq, where KF is the heat conductivity tensor of the classical Fourier
model in which the heat ¯ux qF is given by qF=ÿKFHy; and if KC=ÿ(1ÿtq/ty )KF stands for the heat
conductivity tensor of L±S model, in which the heat ¯ux qC satis®es the Cattaneo law: qC � tq ÇqC �
ÿKCry, then the heat ¯ux q admits the representation: q=qF+qC and K=KF+KC.

Proof. is obtained by substituting q in the form q=qF+qC into the approximation of the modi®ed
Fourier law and using the de®nitions of the pairs (qF, qC) and (KF, KC).

For an isotropic rigid heat conductor, Theorem 4 was proved by Tamma and Zhou (1998). In the
Tamma±Zhou terminology, tq and ty are called the relaxation and retardation times, respectively.

For a C±T model based on the Taylor series approximation of the modi®ed Fourier law which is
quadratic in tq and linear in ty, a displacement-temperature initial-boundary value problem involving
the third order time derivatives of unknown solution may be formulated. Such a problem is a natural
extension of the displacement-temperature problem of L±S theory (see Section 2).

Similarly, as in the case of the L±S and G±L models, no combined experimental data are available
that might be used to determine the time parameters tq and ty as well as the remaining
thermomechanical properties of a C±T model.

Finally, we note that only particular one-dimensional initial-boundary value problems have been
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solved in the C±T theory (Chandrasekharaiah, 1998). A general domain of in¯uence theorem, as well as
a principle of Saint-Venant's type for the dual-phase-lag thermoelastic model, have not been obtained
up to date.

7. Concluding remarks

1. Five di�erent models of a thermoelastic solid in which disturbances are transmitted in a wave-like
manner have been reviewed. These are the L±S, G±L, H±I, G±N, and C±T models. Except for the
H±I model which is strongly nonlinear and applicable at low temperatures, the remaining models are
linear.

2. The emphasis has been made on upper bounds for the velocities of waves propagating in a
nonhomogeneous anisotropic solid in which thermoelastic coupling cannot be ignored. To this
category of solids belong the L±S and G±L models in which the maximum speed of a thermoelastic
wave is dominated by a suitably scaled stress-temperature tensor ®eld, provided the acoustic and heat
conductivity tensor ®elds are relatively small.

3. Two fast moving soliton-like thermoelastic waves, each revealing a fountain e�ect in a neighborhood
of a moving front, and each close to thermodynamical equilibrium far from the front have been
exposed for the low-temperature nonlinear H±I model. The model could be a starting point for
working out a new model that transmits soliton thermoelastic waves of classical type.

4. The G±N model as opposed to the L±S and G±L models admits only propagation of undamped
thermoelastic waves, and this motivates the name of the G±N theory as a Thermoelasticity Without
Energy Dissipation. For the G±N model a Saint-Venant's principle analogous to that of an
isothermal linear elastodynamics holds true.

5. The C±T model is an extension of the L±S model in the sense that both a phase-lag of the heat ¯ux
tq and a phase-lag of the temperature gradient ty come into the formulation of an initial-boundary
value problem; and depending on the Taylor series approximation of a modi®ed Fourier law of heat
conduction, one obtains a sequence of approximate initial-boundary value problems of the C±T
theory.

The results presented in this survey should prove useful for researchers in material science, designers
of new materials, low-temperature physicists, as well as for those working on the development of a
theory of hyperbolic thermoelasticity.
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